If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4=35
We move all terms to the left:
3x^2-4-(35)=0
We add all the numbers together, and all the variables
3x^2-39=0
a = 3; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·3·(-39)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{13}}{2*3}=\frac{0-6\sqrt{13}}{6} =-\frac{6\sqrt{13}}{6} =-\sqrt{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{13}}{2*3}=\frac{0+6\sqrt{13}}{6} =\frac{6\sqrt{13}}{6} =\sqrt{13} $
| x2+8x+9=2x | | 1/2n-2=4 | | 4x-3x=2x+7 | | 45-2v=7v | | 3/7=p-6 | | 2x.8=2(x+4) | | 3x=36-x | | (w-3)(w-2)=(w+3)(w+2) | | 10(j-5)=5(j-8) | | 35x^2-64x-48=0 | | 2s-20=3s-40 | | y=24/4+2 | | 6s-78=s+42 | | 4z-74=3z-50 | | 2x2+x=0 | | 30-5u=u | | -10n+100=6n-12 | | (y+7)(y-3)=(y-1)(y+3) | | 5b=15b-20 | | 14=16j | | x-0.75x-0.25=0 | | -9k-18=-6k-42 | | 4(x+6)-3(2x+1)=2(4x+7)+17 | | 10(s-9)=192 | | Z+65=3z+17 | | 6^x+1=0 | | 3k=30=6k+24 | | -4(8x+7)=-6+24 | | 5u^2=3u+6 | | 4n^2+7n-3=0 | | (g-4)(g+1)=(g+2)(g-6) | | 2-9x^2=0 |